February 14, 2026

MEDAISY

Small Steps Towards a Healthier Life

Ancestral diversity in complex disease genetics: from discovery to translation

Ancestral diversity in complex disease genetics: from discovery to translation
  • NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).

    Article 
    PubMed Central 

    Google Scholar 

  • World Health Organization. World Health Statistics 2024: Monitoring Health for the SDGs, Sustainable Development Goals (WHO, 2024).

  • de Bont, J. et al. Ambient air pollution and cardiovascular diseases: an umbrella review of systematic reviews and meta-analyses. J. Intern. Med. 291, 779–800 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vaduganathan, M., Mensah, G. A., Turco, J. V., Fuster, V. & Roth, G. A. The global burden of cardiovascular diseases and risk: a compass for future health. J. Am. Coll. Cardiol. 80, 2361–2371 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Delon, C. et al. Differences in cancer incidence by broad ethnic group in England, 2013-2017. Br. J. Cancer 126, 1765–1773 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 243–250 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewis, C. M. & Vassos, E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 12, 44 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. Polygenic prediction across populations is influenced by ancestry, genetic architecture, and methodology. Cell Genom. 3, 100408 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kullo, I. J. Clinical use of polygenic risk scores: current status, barriers and future directions. Nat. Rev. Genet. (2025).

    Article 
    PubMed 

    Google Scholar 

  • Hingorani, A. D. et al. Performance of polygenic risk scores in screening, prediction, and risk stratification: secondary analysis of data in the polygenic score catalog. BMJ Med. 2, e000554 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koyama, S. et al. Population-specific putative causal variants shape quantitative traits. Nat. Genet. 56, 2027–2035 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kintu, C. et al. Meta-analysis of African ancestry genome-wide association studies identified novel locus and validates multiple loci associated with kidney function. BMC Genomics 24, 496 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • All of Us Research Program Genomics Investigators. Genomic data in the All of Us research program. Nature 627, 340–346 (2024).

    Article 

    Google Scholar 

  • Nagai, A. et al. Overview of the Biobank Japan project: study design and profile. J. Epidemiol. 27, S2–S8 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walters, R. G. et al. Genotyping and population characteristics of the China Kadoorie Biobank. Cell Genom. 3, 100361 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finer, S. et al. Cohort profile: East London Genes & Health (ELGH), a community-based population genomics and health study in British Bangladeshi and British Pakistani people. Int. J. Epidemiol. 49, 20–21i (2020).

    Article 
    PubMed 

    Google Scholar 

  • Executive Office of the President. Executive Order 14151 — Ending radical and wasteful government DEI programs and preferencing. Federal Register (2025).

  • Executive Office of the President. Executive Order 14173 — Ending illegal discrimination and restoring merit-based opportunity. Federal Register (2025).

  • Martschenko, D., Trejo, S. & Domingue, B. W. Genetics and education: recent developments in the context of an ugly history and an uncertain future. AERA Open 5, 233285841881051 (2019).

    Article 

    Google Scholar 

  • Saini, A. Superior: The Return of Race Science (HarperCollins, 2021).

  • Rutherford, A. How to Argue with a Racist: History, Science, Race and Reality (Orion Publishing Group Limited, 2021).

  • Wakeley, J. The limits of theoretical population genetics. Genetics 169, 1–7 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewis, A. C. F. et al. Getting genetic ancestry right for science and society. Science 376, 250–252 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krieger, N. Who and what is a ‘population’? Historical debates, current controversies, and implications for understanding ‘population health’ and rectifying health inequities16. Milbank Q. 90, 634–681 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coop, G. Genetic similarity versus genetic ancestry groups as sample descriptors in human genetics. Preprint at arXiv (2022).

  • National Academies of Sciences, Engineering, and Medicine; Division of Behavioral and Social Sciences and Education; Health and Medicine Division; Committee on Population; Board on Health Sciences Policy; Committee on the Use of Race, Ethnicity, and Ancestry as Population Descriptors in Genomics Research. Using Population Descriptors in Genetics and Genomics Research: A New Framework for an Evolving Field (National Academies Press, 2023).

  • Tattersall, I. Out of Africa: modern human origins special feature: human origins: out of Africa. Proc. Natl Acad. Sci. USA 106, 16018–16021 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stringer, C. B. The emergence of modern humans. Sci. Am. 263, 98–104 (1990).

    Article 
    PubMed 

    Google Scholar 

  • Collins, F. S. & Mansoura, M. K. The human genome project. revealing the shared inheritance of all humankind. Cancer 91, 221–225 (2001).

    Article 
    PubMed 

    Google Scholar 

  • Ashraf, Q. & Galor, O. The ‘out of Africa’ hypothesis, human genetic diversity, and comparative economic development. Am. Econ. Rev. 103, 1–46 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Speidel, L., Forest, M., Shi, S. & Myers, S. R. A method for genome-wide genealogy estimation for thousands of samples. Nat. Genet. 51, 1321–1329 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amos, W. & Hoffman, J. I. Evidence that two main bottleneck events shaped modern human genetic diversity. Proc. Biol. Sci. 277, 131–137 (2010).

    PubMed 

    Google Scholar 

  • Nielsen, R. et al. Tracing the peopling of the world through genomics. Nature 541, 302–310 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saeb, A. T. M. & Al-Naqeb, D. The impact of evolutionary driving forces on human complex diseases: a population genetics approach. Scientifica 2016, 2079704 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ashraf, B. & Lawson, D. J. Genetic drift from the out-of-Africa bottleneck leads to biased estimation of genetic architecture and selection. Eur. J. Hum. Genet. 29, 1549–1556 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tiret, L. et al. Heterogeneity of linkage disequilibrium in human genes has implications for association studies of common diseases. Hum. Mol. Genet. 11, 419–429 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Campbell, M. C. & Tishkoff, S. A. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu. Rev. Genomics Hum. Genet. 9, 403–433 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lucena-Perez, M. et al. Bottleneck-associated changes in the genomic landscape of genetic diversity in wild lynx populations. Evol. Appl. 14, 2664–2679 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanai, M. et al. Meta-analysis fine-mapping is often miscalibrated at single-variant resolution. Cell Genom. 2, 100210 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meng, X. et al. Multi-ancestry genome-wide association study of major depression aids locus discovery, fine mapping, gene prioritization and causal inference. Nat. Genet. 56, 222–233 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serre, D. & Pääbo, S. Evidence for gradients of human genetic diversity within and among continents. Genome Res. 14, 1679–1685 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Racimo, F., Marnetto, D. & Huerta-Sánchez, E. Signatures of archaic adaptive introgression in present-day human populations. Mol. Biol. Evol. 34, 296–317 (2017).

    PubMed 

    Google Scholar 

  • Browning, S. R., Browning, B. L., Zhou, Y., Tucci, S. & Akey, J. M. Analysis of human sequence data reveals two pulses of archaic Denisovan admixture. Cell 173, 53–61.e9 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hubisz, M. J., Williams, A. L. & Siepel, A. Mapping gene flow between ancient hominins through demography-aware inference of the ancestral recombination graph. PLoS Genet. 16, e1008895 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dannemann, M., Prüfer, K. & Kelso, J. Functional implications of Neandertal introgression in modern humans. Genome Biol. 18, 61 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X. et al. The history and evolution of the Denisovan-EPAS1 haplotype in Tibetans. Proc. Natl Acad. Sci. USA 118, e2020803118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, O. L., Tobler, R., Schmidt, J. M. & Huber, C. D. Fluctuating selection and the determinants of genetic variation. Trends Genet. 39, 491–504 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Panoutsopoulou, K. et al. Genetic characterization of Greek population isolates reveals strong genetic drift at missense and trait-associated variants. Nat. Commun. 5, 5345 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Gravel, S. When is selection effective? Genetics 203, 451–462 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maher, M. C., Uricchio, L. H., Torgerson, D. G. & Hernandez, R. D. Population genetics of rare variants and complex diseases. Hum. Hered. 74, 118–128 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Hernandez, L. M., Blazer, D. G. & Institute of Medicine (US) Committee on Assessing Interactions Among Social, Behavioral, and Genetic Factors. Genetics and Health (National Academies Press, 2006).

  • Hatzikotoulas, K., Gilly, A. & Zeggini, E. Using population isolates in genetic association studies. Brief. Funct. Genomics 13, 371–377 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pollin, T. I. et al. A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science 322, 1702–1705 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tachmazidou, I. et al. A rare functional cardioprotective APOC3 variant has risen in frequency in distinct population isolates. Nat. Commun. 4, 2872 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Vasseur, E. & Quintana-Murci, L. The impact of natural selection on health and disease: uses of the population genetics approach in humans. Evol. Appl. 6, 596–607 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Esoh, K. & Wonkam, A. Evolutionary history of sickle-cell mutation: implications for global genetic medicine. Hum. Mol. Genet. 30, R119–R128 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwiatkowski, D. P. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 77, 171–192 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bersaglieri, T. et al. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 74, 1111–1120 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vermeulen, R., Schymanski, E. L., Barabási, A.-L. & Miller, G. W. The exposome and health: where chemistry meets biology. Science 367, 392–396 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, G. W. & Jones, D. P. The nature of nurture: refining the definition of the exposome. Toxicol. Sci. 137, 1–2 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Zeng, J. et al. Widespread signatures of natural selection across human complex traits and functional genomic categories. Nat. Commun. 12, 1164 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berg, J. J. & Coop, G. A population genetic signal of polygenic adaptation. PLoS Genet. 10, e1004412 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sohail, M. et al. Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. eLife 8, e39702 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berg, J. J. et al. Reduced signal for polygenic adaptation of height in UK Biobank. eLife 8, e39725 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stingone, J. A. et al. Toward greater implementation of the exposome research paradigm within environmental epidemiology. Annu. Rev. Public Health 38, 315–327 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Al Thani, A. et al. Qatar Biobank cohort study: study design and first results. Am. J. Epidemiol. 188, 1420–1433 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Tluway, F. et al. Cohort profile: Africa Wits-INDEPTH partnership for genomic studies (AWI-Gen) in four sub-Saharan African countries. Int. J. Epidemiol. 54, dyae173 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Stevenson, A. et al. Neuropsychiatric genetics of African populations-psychosis (NeuroGAP-Psychosis): a case-control study protocol and GWAS in Ethiopia, Kenya, South Africa and Uganda. BMJ Open 9, e025469 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valkovskaya, M. et al. Study protocol of DIVERGE, the first genetic epidemiological study of major depressive disorder in Pakistan. Psychiatr. Genet. 33, 69–78 (2023).

    Article 
    PubMed 

    Google Scholar 

  • The GEN-BLIP Study. https://lird.org/projects/the-gen-blip-study/.

  • The GEN-SCRIP Study. https://lird.org/projects/the-gen-scrip-study/.

  • Zhou, W. et al. Global biobank meta-analysis initiative: powering genetic discovery across human disease. Cell Genom. 2, 100192 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • GBMI Home. Global Biobank Meta https://www.globalbiobankmeta.org/.

  • Verma, A. et al. Diversity and scale: genetic architecture of 2068 traits in the VA Million Veteran Program. Science 385, eadj1182 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Gurdasani, D. et al. Uganda genome resource enables insights into population history and genomic discovery in Africa. Cell 179, 984–1002.e36 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verlouw, J. A. M. et al. A comparison of genotyping arrays. Eur. J. Hum. Genet. 29, 1611–1624 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hanks, S. C. et al. Extent to which array genotyping and imputation with large reference panels approximate deep whole-genome sequencing. Am. J. Hum. Genet. 109, 1653–1666 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, W. et al. Improving power of association tests using multiple sets of imputed genotypes from distributed reference panels. Genet. Epidemiol. 41, 744–755 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karczewski, K. J. et al. Pan-UK Biobank genome-wide association analyses enhance discovery and resolution of ancestry-enriched effects. Nat. Genet. 57, 2408–2417 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Asimit, J. L., Hatzikotoulas, K., McCarthy, M., Morris, A. P. & Zeggini, E. Trans-ethnic study design approaches for fine-mapping. Eur. J. Hum. Genet. 24, 1330–1336 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, K. et al. Fine-mapping across diverse ancestries drives the discovery of putative causal variants underlying human complex traits and diseases. Nat. Genet. 56, 1841–1850 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z. & Zhou, X. Towards improved fine-mapping of candidate causal variants. Nat. Rev. Genet. (2025).

    Article 
    PubMed 

    Google Scholar 

  • Lam, M. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 51, 1670–1678 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, B. & Zhou, X. MESuSiE enables scalable and powerful multi-ancestry fine-mapping of causal variants in genome-wide association studies. Nat. Genet. 56, 170–179 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, F. et al. Leveraging information between multiple population groups and traits improves fine-mapping resolution. Nat. Commun. 14, 7279 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Connell, K. S. et al. Genomics yields biological and phenotypic insights into bipolar disorder. Nature 639, 968–975 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia, G. et al. Refining breast cancer genetic risk and biology through multi-ancestry fine-mapping analyses of 192 risk regions. Nat. Genet. 57, 80–87 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Ishigaki, K. et al. Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat. Genet. 52, 669–679 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, D., Zhao, H. & Gelernter, J. Strong protective effect of the aldehyde dehydrogenase gene (ALDH2) 504lys (*2) allele against alcoholism and alcohol-induced medical diseases in Asians. Hum. Genet. 131, 725–737 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Polimanti, R. & Gelernter, J. ADH1B: From alcoholism, natural selection, and cancer to the human phenome. Am. J. Med. Genet. B Neuropsychiatr. Genet. 177, 113–125 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Ishigaki, K. et al. Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis. Nat. Genet. 54, 1640–1651 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahajan, A. et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat. Genet. 54, 560–572 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, B. C., Asian Genetic Epidemiology Network Type 2 Diabetes Consortium, Ye, C. J., Price, A. L. & Zaitlen, N. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet. 99, 76–88 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galinsky, K. J. et al. Estimating cross-population genetic correlations of causal effect sizes: GALINSKY et al. Genet. Epidemiol. 43, 180–188 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Shi, H. et al. Population-specific causal disease effect sizes in functionally important regions impacted by selection. Nat. Commun. 12, 1098 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, Q. Q. et al. Transferability of genetic loci and polygenic scores for cardiometabolic traits in British Pakistani and Bangladeshi individuals. Nat. Commun. 13, 4664 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai, N. et al. Minimal phenotyping yields genome-wide association signals of low specificity for major depression. Nat. Genet. 52, 437–447 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Lillo, A. et al. Cross-ancestry genome-wide association studies identified heterogeneous loci associated with differences of allele frequency and regulome tagging between participants of European descent and other ancestry groups from the UK Biobank. Hum. Mol. Genet. 30, 1457–1467 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, S. et al. Genome-wide association study meta-analysis of blood pressure traits and hypertension in sub-Saharan African populations: an AWI-gen study. Nat. Commun. 14, 8376 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elashi, A. A. et al. Genome-wide association study and trans-ethnic meta-analysis identify novel susceptibility loci for type 2 diabetes mellitus. BMC Med. Genomics 17, 115 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, H. et al. Localizing components of shared transethnic genetic architecture of complex traits from GWAS summary data. Am. J. Hum. Genet. 106, 805–817 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. D. et al. Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nat. Commun. 11, 3353 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mills, M. C. & Rahal, C. The GWAS diversity monitor tracks diversity by disease in real time. Nat. Genet. 52, 242–243 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Dunca, D. et al. Comparing the effects of CETP in east asian and European ancestries: a Mendelian randomization study. Nat. Commun. 15, 5302 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Millwood, I. Y. et al. Association of CETP gene variants with risk for vascular and nonvascular diseases among Chinese adults. JAMA Cardiol. 3, 34–43 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Neuhausen, S. L. Ethnic differences in cancer risk resulting from genetic variation. Cancer 86, 2575–2582 (1999).

    Article 
    PubMed 

    Google Scholar 

  • Martin, A. R. et al. Human demographic history impacts genetic risk prediction across diverse populations. Am. J. Hum. Genet. 100, 635–649 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Whiteford, H. A. et al. Global burden of disease attributable to mental and substance use disorders: findings from the global burden of disease study 2010. Lancet 382, 1575–1586 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Lehmann, B. et al. Methodological opportunities in genomic data analysis to advance health equity. Nat. Rev. Genet. 26, 635–649 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Kanai, M. et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 50, 390–400 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Minegishi, N. et al. Biobank establishment and sample management in the Tohoku medical megabank project. Tohoku J. Exp. Med. 248, 45–55 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Li, Z. et al. CMDB: the comprehensive population genome variation database of China. Nucleic Acids Res. 51, D890–D895 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Feng, Y.-C. A. et al. Taiwan Biobank: a rich biomedical research database of the Taiwanese population. Cell Genom. 2, 100197 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, H.-C. et al. The Taiwan precision medicine initiative: a cohort for large-scale studies. Genetics (2024).

    Article 
    PubMed 

    Google Scholar 

  • Bhattacharyya, C. et al. Mapping genetic diversity with the GenomeIndia project. Nat. Genet. 57, 767–773 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Chowdhury, R. et al. Cohort profile: the BangladEsh longitudinal investigation of emerging vascular and nonvascular events (BELIEVE) cohort study. BMJ Open 15, e088338 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elmonem, M. A. et al. The Egypt genome project. Nat. Genet. 56, 1035–1037 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Gurdasani, D. et al. The African Genome Variation Project shapes medical genetics in Africa. Nature 517, 327–332 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Fatumo, S. et al. Uganda genome resource: a rich research database for genomic studies of communicable and non-communicable diseases in Africa. Cell Genom. 2, None (2022).

    PubMed 

    Google Scholar 

  • Mulder, N. et al. H3Africa: current perspectives. Pharmgenomics. Pers. Med. 11, 59–66 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Choudhury, A. et al. High-depth African genomes inform human migration and health. Nature 586, 741–748 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ziyatdinov, A. et al. Genotyping, sequencing and analysis of 140,000 adults from Mexico City. Nature 622, 784–793 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leitsalu, L. et al. Cohort profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int. J. Epidemiol. 44, 1137–1147 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Mägi, R. Diverse landscape of genomic research within the Estonian Biobank. Hum. Mol. Genet. (2025).

    Article 
    PubMed 

    Google Scholar 

  • Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samuel, G. N. & Farsides, B. The UK’s 100,000 genomes project: manifesting policymakers’ expectations. New Genet. Soc. 36, 336–353 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Majara, L. et al. 56. Genome wide association study of schizophrenia in the neuropsychiatric genetics in African population-psychosis (neurogap-psychosis) study. Eur. Neuropsychopharmacol. 87, 79–80 (2024).

    Article 

    Google Scholar 

  • Ahmad, S. et al. Physical activity, smoking, and genetic predisposition to obesity in people from Pakistan: the PROMIS study. BMC Med. Genet. 16, 114 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saleheen, D. et al. The Pakistan risk of myocardial infarction study: a resource for the study of genetic, lifestyle and other determinants of myocardial infarction in South Asia. Eur. J. Epidemiol. 24, 329–338 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cook, M. B. et al. Our future health: a unique global resource for discovery and translational research. Nat. Med. 31, 728–730 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Venner, E. et al. The frequency of pathogenic variation in the All of Us cohort reveals ancestry-driven disparities. Commun. Biol. 7, 174 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wojcik, G. L. et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 570, 514–518 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zawistowski, M. et al. The Michigan Genomics Initiative: a biobank linking genotypes and electronic clinical records in Michigan Medicine patients. Cell Genom. 3, 100257 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gallo, L. C. et al. The hispanic community health study/study of latinos sociocultural ancillary study: sample, design, and procedures. Ethn. Dis. 24, 77–83 (2014).

    PubMed 

    Google Scholar 

  • LaVange, L. M. et al. Sample design and cohort selection in the Hispanic community health study/study of Latinos. Ann. Epidemiol. 20, 642–649 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TopMed program. Nature 590, 290–299 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roden, D. M. et al. Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clin. Pharmacol. Ther. 84, 362–369 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Kirsh, V. A. et al. Cohort profile: the Ontario Health Study (OHS). Int. J. Epidemiol. 52, e137–e151 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Momin, M. M. et al. A method for an unbiased estimate of cross-ancestry genetic correlation using individual-level data. Nat. Commun. 14, 722 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Werme, J., van der Sluis, S., Posthuma, D. & de Leeuw, C. A. An integrated framework for local genetic correlation analysis. Nat. Genet. 54, 274–282 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Mägi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, S. et al. Accounting for heterogeneity due to environmental sources in meta-analysis of genome-wide association studies. Commun. Biol. 7, 1512 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Atkinson, E. G. et al. Tractor uses local ancestry to enable the inclusion of admixed individuals in GWAS and to boost power. Nat. Genet. 53, 195–204 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • LaPierre, N. et al. Identifying causal variants by fine mapping across multiple studies. PLoS Genet. 17, e1009733 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rossen, J. et al. MultiSuSiE improves multi-ancestry fine-mapping in All of Us whole-genome sequencing data. Preprint at medRxiv (2024).

  • Chen, F. et al. Multi-ancestry transcriptome-wide association analyses yield insights into tobacco use biology and drug repurposing. Nat. Genet. 55, 291–300 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z. et al. METRO: Multi-ancestry transcriptome-wide association studies for powerful gene-trait association detection. Am. J. Hum. Genet. 109, 783–801 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, Z. et al. Multi-ancestry fine-mapping improves precision to identify causal genes in transcriptome-wide association studies. Am. J. Hum. Genet. 109, 1388–1404 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 573–580 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H. et al. A new method for multiancestry polygenic prediction improves performance across diverse populations. Nat. Genet. 55, 1757–1768 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weissbrod, O. et al. Leveraging fine-mapping and multipopulation training data to improve cross-population polygenic risk scores. Nat. Genet. 54, 450–458 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, R. & Pasaniuc, B. Implications of self-identified race, ethnicity, and genetic ancestry on genetic association studies in biobanks within health systems. Preprint at arXiv (2024).

  • Yearby, R., Clark, B. & Figueroa, J. F. Structural racism in historical and modern US health care policy. Health Aff. 41, 187–194 (2022).

    Article 

    Google Scholar 

  • Kittles, R. A. & Weiss, K. M. Race, ancestry, and genes: implications for defining disease risk. Annu. Rev. Genomics Hum. Genet. 4, 33–67 (2003).

    Article 
    PubMed 

    Google Scholar 

  • The Florida Senate. CS/CS/HB 999: Postsecondary Educational Institutions. https://www.flsenate.gov/Session/Bill/2023/999.

  • The White House. Ending Radical and Wasteful Government DEI Programs and Preferencing (2025).

  • Whitehurst, L. Supreme Court lets trump administration cut $783 million of research funding in anti-DEI push. AP News (2025).

  • Schwabish, J. & Axelrod, J. NSF has canceled more than 1,500 grants. Nearly 90 percent were related to DEI. Urban Institute (2025).

  • Nunes, F. DEI initiatives removed from federal agencies that fund science, but scientific research continues. The Conversation (2025).

  • Tillin, T. et al. Insulin resistance and truncal obesity as important determinants of the greater incidence of diabetes in Indian Asians and African Caribbeans compared with Europeans: the Southall and Brent REvisited (SABRE) cohort. Diabetes Care 36, 383–393 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hodgson, S. et al. Integrating polygenic risk scores in the prediction of type 2 diabetes risk and subtypes in British Pakistanis and Bangladeshis: a population-based cohort study. PLoS Med. 19, e1003981 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Farmaki, A.-E. et al. Type 2 diabetes risks and determinants in second-generation migrants and mixed ethnicity people of South Asian and African Caribbean descent in the UK. Diabetologia 65, 113–127 (2022).

    Article 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.